?

Log in

No account? Create an account
entries friends calendar profile Блог "Артефакт". Аналитика Федора Дергачева Previous Previous Next Next
Мир как результат катастрофы - Федор Дергачев
artefact_2007
artefact_2007
Мир как результат катастрофы

Станислав Лем


 Мир как результат катастрофы
 

    С. Лем «The World as Holocaust». Перевод выполнен по книге «Stanislaw Lem Biblioteka XXI wieku, Wydawnictwo Literacke», Krakow 1986, стр. 5-42. Перевел с польского и набрал текст Безгодов М.В.   
 

Вступление

    Книги, снабженные таким или подобным названием, начинают появляться на закате XX века, но содержащийся в них образ мира распространится только в следующем веке, когда открытия, пуская ростки во взаимно удаленных отраслях науки, соединяются в целое. Провозглашение этого целого, скажем сразу, будет антикоперниканским переворотом в астрономии, опровергнет наше представление о месте, которое мы занимаем во Вселенной…

    Из новых открытий галактической астрономии, из новых моделей астрогенеза и планетогенеза, из состава радиоизотопов, содержащихся в метеоритах, как из разбросанных частей головоломки начинает появляться новая картина, реконструирующая историю Солнечной системы и возникновение земной жизни — утверждение столь сенсационное и противоречащее признанной до сих пор картине мира.

    Если изложить предмет в самой краткой форме, то из гипотез, воссоздающих десять миллиардов лет существования Млечного пути следует, что человек возник, потому что Космос является местом катастроф, а своим возникновением Земля вместе с жизнью обязана особой серии таких катастроф.

    Также следует то, что Солнце родило свою планетную семью вследствие бурных катаклизмов, что Солнечная система выбралась потом из области катастрофических волнений, и потому жизнь могла возникнуть и развиваться, чтобы, наконец, овладеть всей Землей. В следующем миллиардолетии, когда человек не имел, собственно говоря, шансов для возникновения, так как Древо Видов не давало этому места, очередная катастрофа открыла дорогу антропогенезу тем, что убила сотни миллионов земных существ.

    В этой новой картине мира центральное место занимает, следовательно, творение посредством разрушения и посредством наступающей после него релаксации системы. Еще короче можно сказать и так: Земля возникла, когда Прасолнце вошло в гибельную область; жизнь возникла, когда Земля покинула эту область; человек возник, потому что в следующем миллиардолетии гибель снова обрушилась на Землю.

    Упрямо противопоставляясь недетерминированности квантовой механики, Эйнштейн высказался, что «Бог не играет с миром в кости». Желая этим сказать, что атомные явления не могут управляться случаем. Оказалось, однако, что бог играет в кости с миром не только в масштабе атомов, но также в масштабе галактик, звезд, планет, возникновения жизни и возникающих в них разумных существ. То, что мы обязаны нашим существованием как катастрофам, которые произошли в «соответствующем месте и в соответствующее время», так и таким, до которых в других эпохах и местах не дошло. Мы возникли, прошли (история нашей звезды, затем планеты, биогенез и эволюция) через многочисленные «игольные ушки», и, тем самым, девять миллиардов лет, отделяющих возникновение газового протосолярного облака от возникновения Homo Sapiens, можно прировнять к гигантскому слалому, в котором не остались обойденными ни одни ворота.

    Уже известно, что таких «ворот» было довольно много, что любое выпадение со слаломной трассы сделало бы невозможным возникновение Человека, но неизвестно, как «широк» был этот путь со своими поворотами и рамками, иначе говоря, какова была вероятность «правильного хода», финишем которого является антропогенез.

    А, следовательно, мир, как узнала наука прошлого столетия, оказывается собранием случайных катастроф, одновременно созидающих и разрушающих, причем случайным было это собрание, зато каждая из этих катастроф подчинялась точным законам физики…

 

II

    Добрых три четверти галактик имеют вид спирального диска с ядром, от которого отходят две ветви, как в нашем Млечном пути. Галактическая система, сложенная из газовых и пылевых туманностей и звезд (которые постоянно возникают в ней и гибнут) вращается, при чем ядро вращается с большей угловой скоростью, чем ветви, которые не поспевают и, собственно по этому, придают целому вид спирали. 
    Ветви, однако, не двигаются с той же скоростью, что и звезды. 
    Неизменной форме спирали галактика обязана волнам сгущения, в которых звезды играют роль молекул в обычном газе. Имея различные скорости обращения, звезды, значительно удаленные от ядра, отстают от ветви, а звезды, расположенные около ядра, догоняют спиральную ветвь и проходят ее насквозь. Скорость ту же самую, что и скорость ветви имеют только звезды, расположенные на половинном расстоянии от ядра. Это — так называемая синхронная окружность. 
    Газовое облако, из которого должно было возникнуть Солнце с планетами, находилось около пяти миллиардов лет тому назад у внутреннего края спиральной ветви. Облако догоняло эту ветвь с небольшой скоростью — порядка 1 км/сек. Это облако, вторгнувшееся вглубь волны сгущения, испытало «заражение» продуктами Сверхновой звезды, которая вспыхнула вблизи него. (Это были изотопы йода и плутония). Данные изотопы распадались, пока из них не возник другой элемент — ксенон. В это время облако подверглось сжатию со стороны волны сгущения, в которой оно плыло, что способствовало его конденсации, пока из него не возникла молодая звезда Солнце. Под конец этого периода, около 4,5 млрд лет тому назад, вспыхнула поблизости другая Сверхновая звезда, которая вызвала заражение околосолнечной туманности (т.к. не весь протосолнечный газ сосредоточился к тому времени в Солнце) радиоактивным алюминием. Это ускорило, а возможно, и вызвало возникновение планет
    Как показали моделирующие расчеты, для того, чтобы газовый диск, вращающийся вокруг молодой звезды, подвергся сегментации и начал сосредоточиваться в планеты, необходимо такое «вмешательство извне», как мощный «толчок»: им был взрыв Сверхновой, которая вспыхнула в то время недалеко от Солнца. 
    Откуда обо всем этом известно? Из состава изотопов, содержащихся в метеоритах Солнечной системы; зная период полураспада названных изотопов (йода, плутония, алюминия), можно рассчитать, когда произошло заражение ими протосолнечного облака. Произошло это, по меньшей мере, два раза; разное время распада этих изотопов позволяет определить, что первое заражение от вспышки Сверхновой наступило вскоре после входа протосолнечного облака внутрь края галактической ветви, а другое заражение (радиоактивным алюминием) произошло примерно на 300 млн лет позднее. Самый ранний период развития, следовательно, Солнце провело в области сильной радиации и бурных ударов, вызывающих планетогенез, а потом, с уже отвердевающими и остывающими планетами, покинуло эту область. Оно вышло в пространство высокого вакуума, изолированного от звездных катастроф и, благодаря этому, жизнь могла развиваться на Земле без убийственных происшествий. 
    Как следует из этой картины, закон Коперника, по мысли которого Земля не находится (вместе с Солнцем) в каком-то особенно выделенном месте, а находится «где-то», стоит под большим знаком вопроса
    Если бы Солнце находилось на далекой периферии Галактики и, медленно двигаясь, не пересекло ее ветвей, вероятно, у него не возникли бы планеты. Так как планетогенез требует в качестве «акушерских операций» бурных происшествий, а именно мощных ударных волн от Сверхновых в состоянии взрыва (или же, по меньшей мере, одной такой «близкой встречи»). 
    Если бы Солнце, породив от таких ударов планеты, обращалось близко от галактического ядра и, тем самым, значительно быстрее, чем ветви спирали, оно должно было часто их пересекать. Тогда многочисленные излучения и радиоактивные удары сделали бы невозможным возникновение жизни на Земле, или бы уничтожили ее на ранней стадии развития. 
    Видимо, если бы Солнце двигалось вдоль самой синхронной окружности Галактики, и, по этому, не покидало бы ее рукава, жизнь также не смогла бы закрепиться на нашей планете и была бы рано или поздно убита какой-нибудь Сверхновой. Сверхновые вспыхивают большей частью внутри ветвей Галактики. Кроме того, среднее расстояние между звездами, находящимися внутри ветвей, значительно меньше, чем между ветвями. 
    Итак, условия, выгодные для планетогенеза, господствуют внутри спиральных ветвей, а условия, благоприятствующие возникновению и развитию жизни, господствуют в пустоте между ветвями. Таким условиям не удовлетворяют ни звезды, расположенные вблизи ядра Галактики, ни звезды на ее окраине, ни, наконец, звезды, орбиты которых совпадают с синхронной окружностью, а удовлетворяют только такие, которые находятся поблизости от синхронной окружности. 
    Кроме того, следует понять, что слишком близкая вспышка Сверхновой вместо того, чтобы сжать протосолнечное облако и ускорить его планетарную конденсацию, разметала бы все, как смерч. 
    Вспышка, слишком удаленная, могла бы оказаться недостаточным импульсом для планетогенеза. 
    Последующие вспышки Сверхновых, соседствующих с Солнцем, «должны», следовательно, были быть «должным образом» синхронизированы с очередными этапами развития звезды, Солнечной системы и, наконец, системы, в которой возникла жизнь. 
    Протосолнечное облако было игроком, который подошел к рулетке с необходимым выходным капиталом, затем, играя, увеличил этот капитал выигрышами и покинул казино вовремя, не подвергаясь тем самым утрате всего, чем обогатила его «череда» выгодных случаев… 
    Вернемся еще раз к реконструкции история Солнца и его планет. Там, где синхронная окружность пересекает спиральные ветви, они имеют около 300 парсеков толщины. Протосолнечное газовое облако, двигаясь по орбите, наклоненной под углом 7-8 градусов к плоскости Галактики, вошло в галактическую ветвь первый раз около 4-9 миллиардов лет тому назад. В течение 300 млн лет это облако подвергалось бурным воздействиям при прохождении через всю толщу ветви, а с тех пор как ее покинуло, путешествовало в спокойной пустоте. Это путешествие продолжалось дольше, чем пересечение ветви, потому что синхронная окружность, вблизи которой движется Солнце, пересекает спиральную ветвь под острым углом, вследствие этого дуга солнечной орбиты между ветвями длиннее, чем дуга внутри ветви. 

 

 

     Рис.

    а - синхронная окружность,

    б - спиральная ветвь,

    в - место остаточного заражения радиоактивным йодом и плутонием (I129, Pu244),

    г - распад изотопов йода и плутония,

    д - возникновение Солнца и остаточное радиоактивное заражение у Сверхновой (Al26)

    Рисунок (согласно Л.С. Морочкину - «Природа» №6, М., 1982) показывает схему нашей Галактики, радиус (дугу) синхронной окружности, а также орбиту, по которой Солнечная система обращается вокруг галактического ядра. Скорость, с которой Солнце вместе с планетами двигается относительно спиральных ветвей, является предметом спора. На представленной схеме наша система прошла уже через обе ветви. Если было так, то первый проход осуществило газово-пылевое облако, которое начало конденсироваться, только пересекая другую галактическую ветвь. Альтернатива, либо «мы имеем за собой» один проход, либо два, не является существенной, так как относится ко времени существования облака, то есть тогда, когда оно начало формироваться, а не тогда, когда оно начало подвергаться фрагментации и, тем самым, вошло в стадию астрогенеза. Звезды возникают таким способом и сегодня.

    Обособленное облако не может сжаться в звезду под действием гравитации, так как сохраняется (в соответствии с законами динамики) момент вращения; облако вращалось бы тем быстрее, чем меньше был бы его радиус. В конце возникла бы звезда, у которой скорость вращения экватора превосходила бы скорость света, что невозможно. Центробежные силы разорвали бы ее намного раньше. Звезды же возникают массами из отдельных фрагментов облака в ходе процессов, сначала медленных, а затем гораздо более бурных. Рассеиваясь во время конденсации, фрагменты облака отбирают у молодых звезд часть их момента вращения. Если говорить о «производительности астрогенеза», как отношения между массой первоначального облака и соответствующей массы возникших из него звезд, то эта производительность окажется небольшой. Галактика является, следовательно, «производителем», поступающим очень расточительно с выходным капиталом материи. Но рассеянные части рождающих звёзды облаков, спустя какое-то время, опять начинают сгущаться под действием гравитации, и процесс повторяется.

    Не всякий из фрагментов облака, вошедший в конденсацию, ведет себя таким образом. Когда начинается рождающий звёзды коллапс, центр облака является более плотным, чем его периферия. Поэтому различаются массы рождающих звёзды фрагментов. Они составляют от 2 до 4 солнечных масс в центре и 10 — 20 на периферии. Из внутренних сгущений могут возникнуть звезды небольшие, долговечные и светящиеся более-менее равномерно в течение миллиардов лет. Зато из больших периферийных звезд могут возникнуть Сверхновые, разрываемые мощными взрывами после астрономически короткой жизни.

    О том, как начало конденсироваться облако, из которого мы возникли, ничего не известно; можно восстановить только судьбу того локального фрагмента, в котором дошло до возникновения Солнца и планет. Когда этот процесс начался, вспыхнувшая поблизости Сверхновая заразила протосолнечное облако своими радиоактивными веществами. Такое заражение произошло, по меньшей мере, двукратно. Протосолнечное облако в первый раз подверглось заражению изотопами йода и плутония, — вероятно вблизи внутреннего края спиральной ветви — а во второй раз в глубине спирали другая Сверхновая бомбардировала его радиоактивным изотопом алюминия (на 300 млн лет позднее).

    Зная время, за которое эти изотопы превращаются за счет распада в другие элементы, можно оценить, когда произошли оба заражения. Короткоживущие изотопы йода и плутония образовали в конце распада стабильный изотоп ксенона, а радиоактивный изотоп алюминия превратился в магний. Эти изотопы ксенона и магния обнаружены в метеоритах нашей системы. Сравнивая эти данные с возрастом земной коры (по времени распада содержащихся в ней долгоживущих изотопов урана и тория), можно приблизительно реконструировать, хотя и не тождественно, сценарий солнечной космогонии. Рисунок отвечает тому сценарию, в котором газовое облако в первый раз прошло через спиральную ветвь 10,5 млрд лет тому назад. Его плотность была в то время подкритичной, следовательно, процесс не дошел еще до фрагментации и возникновения сгущений. Это произошло только после входа в следующую ветвь 4,6 млрд лет тому назад. На периферии сгущений господствовали условия благоприятные для возникновения Сверхновых, а внутри были условия для меньших звезд типа Солнца.  Подвергаясь сжатию и вспышкам Сверхновых, протосолярный сгусток превратился в молодое Солнце с планетами, кометами и метеоритами. Этот космогонический сценарий не свободен от упрощений. Фрагментация газовых облаков происходила случайным образом; через огромные пространства ветвей бегут ударные фронты, вызванные разнообразными катаклизмами; извержения Сверхновых могут содействовать возникновению таких фронтов…

 

III

 

    Луна сыграла огромную, если не решающую роль при возникновении жизни на Земле, так как жизнь могла возникнуть только в водных растворах некоторых химических соединений, и то не в глубоководном океане, а на прибрежных отмелях. Причем, на прабиогенез ускоряющим образом влияло их частое (но в меру) перемешивание, вызванное приливами и отливами, а их причиной была Луна.

    Способ, которым возникали спутники всех планет, значительно менее известен, чем способ возникновения самих планет. Пока нельзя исключить «чрезвычайности» возникновения планетных спутников... Обычный удар волны извержения Сверхновой оказывается пригодным, чтобы его хватило для первичной фрагментации диска протосолярной туманности, но, возможно, для того, чтобы около планет начали конденсироваться их спутники, непременно было нечто вроде пересечения двух круговых волн, расходящихся по поверхности воды, если бросить в нее два камня (недалеко друг от друга). Иными словами, может быть для того, чтобы возникли спутники, необходима была после первой вспышки Сверхновой другая, тоже на не слишком большом расстоянии от прасолнечной системы.

    Если не все эти вопросы получат ответы, то, во всяком случае, некоторые ответы будут даны, и, тем самым, вероятность возникновения жизни в Космосе, называемая также его биогенетической производительностью, или частотой, получит приблизительное числовое значение. Может быть, это значение окажется слишком большим, и мы, тем самым, будем в праве признать обычность жизни в бесчисленных образах на многочисленных планетах того миллиарда галактик, которые нас окружают. Но даже если так будет, книги предсказанных мной названий, начнут появляться…

    Теперь приступим к изложению того, как это произойдет. Выразим мрачное положение вещей в шести словах: без глобальной катастрофы жизни не было бы Человека.

 

IV

 

    Чем новый образ жизни в Космосе отличается от существовавшего до сих пор? Издавна было известно, что планетарное зарождение жизни должно было произойти после длительного хода определенных событий, начавшегося возникновением долговечной и спокойно горящей звезды типа Солнца, а затем та звезда должна создать семью планет. Зато не было известно, что спиральные ветви Галактики являются (или могут быть) попеременно рождающими руслами и гильотинами жизни, в зависимости от того, в какой стадии развития рождающая звёзды материя проплывает через спираль, а также в каком месте ветви происходит этот проход.

    Во время симпозиума в Бюрокане в 1971 году никто кроме меня не утверждал, что распределение рождающих жизнь небесных тел было специальным образом поставлено в зависимость от происшествий планетарного и сверхзвездного (т.е. галактического) масштаба. Разумеется, и я не знал, что цепь этих происшествий охватывает движение протозвёздной туманности поблизости от синхронной окружности, что необходима «специальная» синхронизация астрогенеза внутри такой туманности со вспышками Сверхновых на периферии, и, кроме того, — conditio, sine qua non est longa vita (условие, без которого нет долгой жизни) — что система биогенеза «должна» выйти из бурной зоны спирали в пространство спокойной пустоты между ветвями. 
 

VI

 

    Должен ли, однако, разум быть зачатым в уничтожающем катаклизме?

    Двадцать первый век не ответит определенным образом на этот вопрос. Он будет собирать следующие вещественные доказательства, творить новый образ мира как собрания случайных катастроф, управляемых точными законами, а в затронутом здесь критическом вопросе окончательной ясности не достигнет.

    Он развеет, по правде говоря, слишком много иллюзий, по сей день процветающих в науке. Так, например, установит, вне всякого сомнения, что большой мозг в общем случае не равняется большому уму. Такой мозг является необходимым, но недостаточным условием его возникновения. Исключительный ум, которым якобы наделены дельфины, так как их мозг действительно больше и гораздо сложнее, чем человеческий, тот разум дельфинов, о котором столько написано в наше время, приходится отнести к сказкам. Конечно, этот большой мозг был необходим дельфинам как оружие адаптации, чтобы они могли эффективнее конкурировать в той самой океанической среде с очень «глупыми» акулами; этот большой мозг сделал возможным для дельфинов вхождение и пребывание в биологическую нишу, уже занятую миллионы лет хищными рыбами — но ничего более. Тоже самое и относительно шансов развития разума у пресмыкающихся при отсутствии мезозойской катастрофы — ничего нельзя заключить.

    Эволюцию всех животных (за исключением некоторых паразитов) отличает медленный, но почти что безостановочный рост невральной массы. Если бы, однако, этот рост продолжался в течение многих сотен миллионов лет после мелового, триасового и третичного периодов и т.д., то он также не гарантировал возникновения разумных ящеров.

    Издырявленные кратерами поверхности всех спутников нашей планетарной системы — это как бы фотографии прошлого, застывшие образы начала той системы, которое тоже было творением посредством разрушения. Все тела кружили вокруг молодого Солнца по, зачастую, пересекающимся орбитам, и, следовательно, происходили их столкновения.     Благодаря таким катастрофам увеличивалась масса больших тел, или планет, и одновременно исчезали из системы тела с небольшой массой, сливаясь с планетами. Я уже ранее говорил, что около 4,9 млрд. лет назад Солнце со своей планетарной семьей вышло из бурного пространства галактической спирали и плыло в спокойной пустоте. Это, однако, вовсе не означает, что внутри Солнечной системы было в то время тоже спокойно. Внутренние столкновения планет с метеоритами и кометами еще продолжались, когда жизнь начала рождаться на Земле, и, кроме того, из спиральной ветви не выходили как из дома на улицу; радиационная и звездная плотность не обрываются внезапно в одном месте. Земля в первом миллиардолетии своей жизни все еще постоянно подвергалась ударам Сверхновых, по правде говоря, достаточно удаленных, чтобы они могли истребить жизнь и превратить ее в мертвую планету. Это, приходящее со звездных расстояний, жесткое излучение (рентгеновское и гамма-излучение) было одновременно фактором и деструктивным и конструктивным, так как ускоряло генетические мутации праорганизмов.

    Некоторые насекомые в сто раз менее чувствительны к убийственному действию радиоактивности, чем позвоночные животные. Это, собственно говоря, более удивительно, если учесть, что принципиальная структура наследственной субстанции всех живых организмов одинакова, а отличаются они друг от друга не более, чем строения разных культур, эпох и архитектурных стилей, возведенные из кирпича и камня. Строитель всегда один и тот же, те же самые силы соединяют и спаивают целое.

Разницу чувствительности к убийственному ядерному излучению не должны вызывать какие-нибудь чрезвычайно отдаленные во времени события: это были, вероятно, катастрофы эпохи, в которую, около 430 млн лет назад, возникли пранасекомые, а точнее их предки. Не исключено, однако, что нечувствительность некоторых органических форм к радиации, смертельной для большинства других, возникла миллиард лет назад.

    Итак, дойдет ли в наступающем столетии до воскрешения теории, развитой французским палеонтологом и анатомом Кювье около 1930 г. и названной катастрофизмом? Согласно этой теории процессы геологического масштаба такие, как горообразование, изменение климата, возникновение и исчезновение морей, были переменами бурными и быстрыми, т.е. планетарными катастрофами. В дальнейшем, в середине XIX в., эту теорию развивал ученик Кювье, д'Орбиньи (d'Orbigny); органический мир Земли должен, согласно этой теории, многократно погибать и возникать заново в актах творения, следующих друг за другом. Это соединение катастрофизма и креационизма свела в могилу теория Дарвина. Однако, это было преждевременное погребение. Катастрофы наибольшего масштаба, т.е. космического, являются неотъемлемым условием эволюции звезд, а также эволюции жизни

    Огромные облака темных, холодных газов, кружащие в ветвях Галактик, медленно подвергаются фрагментации также непредвиденно, как разбивается стекло. Законы природы осуществляются не помимо случайных событий, а посредством их.     Статистическая ярость звёзд, миллиарды раз теряющих, чтобы один раз породить жизнь в миллионах её видов, убиваемую случайной катастрофой, чтобы оплодотвориться разумом, есть правило, а не исключение во Вселенной. Солнца возникают от гибели других звезд; таким же образом и остатки дозвездных туманностей затвердевают в планеты. Жизнь является одним из редких выигрышей в этой лотерее, а разум еще более исключителен в последующих розыгрышах, но он обязан своим возникновением естественному отбору, или смерти, совершенствующей уцелевших, а также катастрофам, которые могут внезапно повысить шансы появления разума.

    Итак, процесс строительства мира и жизни не подлежит уже сомнению, но Космос является гигантским расточительным инвестором, расточающим выходной капитал Галактик, а исполнителем, вносящим регулярность в эту игру, является управляющий случаем закон больших чисел. Человек, существующий благодаря тем свойствам материи, которые возникли одновременно с миром, оказывается редким исключением из закона разрушения, недобитком сокрушений и всесожжений. Творение и разрушение, попеременно возникающие и взаимно себя обуславливающие, представляют собой такой порядок вещей, от которого нельзя убежать.

    Такую картину мира постепенно создает наука, до сих пор не комментируя её, а только складывая из открытий биологии и космогонических реконструкций как мозаику из последовательно находимых кусочков. Мы могли бы, собственно, поставить тут точку, но мы задержимся ещё на минуту ради последнего вопроса, который можно поставить.

 

VII

 

    Я нарисовал картину действительности, которую распространит наука XXI века так, как её контуры видны в науке уже сегодня. Картина эта возникла и получила гарантию подлинности от наилучших экспертов. Вопрос, к которому я хочу приступить далее, находясь в области, до которой невозможно уже дойти даже при помощи догадок, относится к прочности этой картины, и, кроме этого, будет ли она уже окончательной.

    История науки показывает, что каждая картина мира, последовательно созданная с её помощью, считалась окончательной, а затем подвергалась корректировке, чтобы, наконец, распасться как рисунок разбитой мозаики, и работу по её складыванию предпринимали с самого начала новые поколения. Религиозные верования стоят на догматах, отбрасывание которых сначала расценивается как отвратительное кощунство, а затем приводит к рождению новой веры. Вера жива благодаря тому, что ее исповеданием является Окончательная Правда и, тем самым, несомненная. Ничего такого же несомненного и окончательного в науке нет. Собственно говоря, знания научной «точности» «не одинаково точны»; ничто также не указывает на то, чтобы мы приближались к Концу Познания как финальному соединению Неподъёмных Знаний и Неустранимого Невежества. Прирост достоверных знаний, осуществляемый при помощи материальной эффективности их приложений, вне сомнения. Мы знаем больше, чем наши предшественники из XIX века, они, в свою очередь, знали больше, чем их праотцы в науке, но, вместе с этим, мы узнаём неисчерпаемость мира, бесконечность глубины тайников материи. Если каждый атом, каждая «элементарная частица» оказываются бездонным колодцем, то уже только эта удивляющая нас (но все как-то себя уже приучили к этому марафонскому бегу без финиша) бездонность познания делает «каждый последний портрет действительности» сомнительным. Быть может Principum Creationis Per Destructionem (принцип творения посредством разрушения) также окажется этапом нашей диагностики, прикладывающей человеческие мерки к тому, что так нечеловечно как Univrsum (Вселенная). Быть может этим, нечеловеческим уже предметом как недоступным нашим бедным животным мозгам, слишком подверженным мерам типа Deus ex Machina (бог из машины), займется возникший при нашей помощи машинный Разум, или, скорее, плоды послемашинной эволюции искусственного интеллекта, только приведенной в движение людьми. Но, говоря об этом, мы уже заходим за XXI век, в тьму, которую не просветлят никакие догадки.

    Берлин, май 1983 года    http://artefact2007.wordpress.com/2008/08/13/мир-как-результат-катастрофы
    Комментарий Федора Дергачева  «Неудобные вопросы» Станислава Лема http://artefact2007.wordpress.com/2008/08/16/«неудобные-вопросы»-станислава-лема-2

Tags: , , ,

3 comments or Leave a comment
Comments
From: (Anonymous) Date: April 28th, 2011 04:03 am (UTC) (Link)

seoblogst

хороший пост!
From: (Anonymous) Date: May 11th, 2011 07:15 pm (UTC) (Link)

seoblya

Подписался по RSS и ретвитнул
artefact_2007 From: artefact_2007 Date: May 17th, 2011 01:37 pm (UTC) (Link)

Re: seoblya

seoblya
Судя по http://seoblya.ru/ Вы - профессионал в компьютерных технологиях.
3 comments or Leave a comment